

Enseignant es: Dovi, Huruguen, Khukhro

Algèbre Linéaire - CMS

7 novembre 2023 Durée : 105 minutes



# Contrôle 1 (Corrigé)

SCIPER: XXXXXX

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé rectoverso, il contient 11 questions et 12 pages, les dernières pouvant être vides. Il y a 27 points au total. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table et vérifiez votre nom et votre numéro SCIPER sur la première page.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
  - les points indiqués si la réponse est correcte,
  - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
  - 0 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.
- Les dessins peuvent être faits au crayon.
- Répondez dans l'espace prévu (aucune feuille supplémentaire ne sera fournie).
- Les brouillons ne sont pas à rendre: ils ne seront pas corrigés.

| Respectez les consignes suivantes   Observe this guidelines   Beachten Sie bitte die unten stehenden Richtlinien |                                                                              |                                                                 |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|
| choisir une réponse   select an answer<br>Antwort auswählen                                                      | ne PAS choisir une réponse   NOT select an answer<br>NICHT Antwort auswählen | Corriger une réponse   Correct an answer<br>Antwort korrigieren |
|                                                                                                                  |                                                                              |                                                                 |
| ce qu'il ne faut <u>PAS</u> faire   what should <u>NOT</u> be done   was man <u>NICHT</u> tun sollte             |                                                                              |                                                                 |
|                                                                                                                  |                                                                              |                                                                 |

# Première partie, questions à choix unique

Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1 (1 point)

Soit  $f: \mathbb{R} \to \mathbb{R}$  l'application donnée par  $f(x) = x^2 + x + 4$ . Que veut dire l'énoncé :

$$\exists y \in \mathbb{R}, \, \forall x \in \mathbb{R}, \, x^2 + x + 4 \neq y ?$$

f est surjective

Pour tout nombre réel x, il existe un nombre réel y tel que  $f(x) \neq y$ 

f n'est pas surjective

 $\int f(x) = 0$  n'a pas de solution

Correction. L'énoncé exprime que l'on peut trouver un y à l'arrivée qui n'a aucun antécédent x par f, c'est la définition même de la surjectivité.

Question 2

Soit  $f: E \to F$  une application. Lequel des énoncés suivants est équivalent à l'énoncé "f est injective"?

$$\forall x \in E, f^{-1}(\{f(x)\}) = \{x\}$$

$$\forall x, x' \in E, x \neq x' \text{ et } f(x) = f(x')$$

$$\forall x, x' \in E, f(x) \neq f(x') \Longrightarrow x \neq x'$$

$$\exists x \in E, f^{-1}(\{f(x)\}) = \{x\}$$

Correction. Une des formulations de l'injectivité est de dire que pour tout x dans l'ensemble de départ, f(x)possède un unique antécédent par f, à savoir x.

Question 3 (1 point)

Laquelle des applications suivantes est injective?

$$g: \mathbb{R} \to \mathbb{R}^2, g(x) = (x^2, 2x^2 + 1)$$

$$g: \mathbb{R} \to \mathbb{R}^2, \ g(x) = (2x+1, 2x+1)$$

$$g: \mathbb{R} \to \mathbb{R}^2, \ g(x) = (x^2, x^2)$$

Correction.  $(2x+1,2x+1)=(2x'+1,2x'+1) \Rightarrow 2x+1=2x'+1 \Rightarrow x=x'$ .

Pour les Questions 4, 5 et 6 ci-dessous on considère les propriétés P, Q et R suivantes portant sur  $x \in \mathbb{N}$ :

 $\begin{array}{l} P \; : \; x \; \text{est multiple de 2}, \\ Q \; : \; x \; \text{est multiple de 3}, \\ R \; : \; x \; \text{est multiple de 6}. \end{array}$ 

Question 4 (2 points)

Laquelle des affirmations ci-dessous est vraie?

 $\square \ \forall x \in \mathbb{N}, (P \text{ ou } R) \Longrightarrow Q$ 

 $\forall x \in \mathbb{N}, P \text{ ou } Q$ 

 $\forall x \in \mathbb{N}, (P \text{ et } Q) \Longrightarrow R$ 

Correction. Si un nombre entier est multiple de 2 et de 3 alors il est automatiquement multiple de 6.

Question 5 (1 point)

Le sous-ensemble de  $\mathbb N$  défini par la propriété caractéristique R est donné par :

 $\{x \in \mathbb{N} \mid \exists k \in \mathbb{N}, x = 6k\}$ 

Correction. x est multiple de 6 si et seulement si il est de la forme 6k pour un certain entier naturel k.

Question 6 (1 point)

Laquelle des affirmations suivantes est la réciproque de l'affirmation  $\forall x \in \mathbb{N}, \text{ non} P \Longrightarrow R$ ?

 $\forall x \in \mathbb{N}, R \Longrightarrow \text{non}P$ 

 $\exists x \in \mathbb{N}, \text{ non} P \text{ et non} R$ 

Correction. On échange l'hypothèse et la conclusion (on étudie le lien de causalité dans l'autre sens).

Pour les Questions 7, 8 et 9 ci-dessous on donne un ensemble fini E et un sous-ensemble  $A \subset E$  vérifiant :

$$Card(E) = 14$$
 et  $Card(A) = 3$ .

On donne aussi les coefficients suivants, figurant dans le triangle de Pascal :

$$\binom{11}{0}=1 \qquad \binom{11}{1}=11 \qquad \binom{11}{2}=55 \qquad \binom{11}{3}=165 \qquad \binom{11}{4}=330 \qquad \binom{11}{5}=462.$$

# Question 7 (2 points)

Combien existe-t-il de sous-ensembles B de E vérifiant :

$$Card(B) = 8 \text{ et } A \cap B = \emptyset$$
?

 $\square$  55  $\square$  462  $\square$  165  $\square$  330

Correction. Comme  $C_EA$  possède 11 éléments, le nombre recherché vaut  $\binom{11}{8} = \binom{11}{3} = 165$ .

## Question 8 (2 points)

Combien existe-t-il de sous-ensembles C de E vérifiant :

$$Card(C) = 6$$
 et  $Card(A \cap C) = 2$ ?

Correction. Pour construire C, on met ensemble un sous-ensemble à 2 éléments de A  $\binom{3}{2} = 3$  possibilités) et un sous-ensemble à 4 éléments de  $\mathbb{C}_E A$   $\binom{11}{4} = 330$  possibilités). Au total, il y a donc  $3 \times 330 = 990$  sous-ensembles C solutions.

## Question 9 (2 points)

Quelle est la valeur exacte de  $\binom{12}{5} - \binom{12}{4}$ ?

 $Correction. \ \, \binom{12}{5} - \binom{12}{4} = (\binom{11}{5} + \binom{11}{4}) - (\binom{11}{4} + \binom{11}{3}) = \binom{11}{5} - \binom{11}{3} = 462 - 165 = 297.$ 

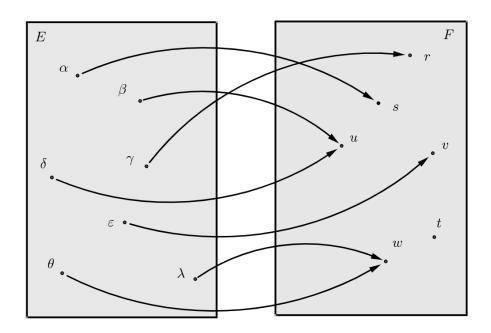


Répondre dans l'espace dédié. Sauf indication contraire, votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher : elles sont réservées au correcteur.

Question 10: Cette question est notée sur 7 points.



Soient les ensembles finis E et F et l'application  $f:E\to F$  décrits par le dessin ci-dessous.



(a) En détaillant votre démarche, déterminer le sous-ensemble  $\mathcal{C}_F f(A)$  de F où :

$$A = \{\alpha, \beta, \gamma, \delta\}.$$

(b) Pour le sous-ensemble A de E donné au (a), est-il vrai ou faux de dire que :

$$\forall x \in E, \quad f(x) \in f(A) \Rightarrow x \in A$$
?

Justifier votre réponse.

- (c) Donner la définition de  $f^{-1}(B)$  où B est un sous-ensemble de F.
- (d) En détaillant votre démarche, déterminer  $f^{-1}(B)$  pour le sous-ensemble :

$$B = \{s, t, u, v, w\}.$$

(e) Sans aucune justification, déterminer un sous-ensemble C de E possédant le moins possible d'éléments et tel que :

$$f(C) = f(f^{-1}(B)),$$

où B est le sous-ensemble de F défini au (d).

(f) Sans aucune justification, définir une application :

$$g: F \to E$$

telle que  $\operatorname{Im}(f \circ g)$  possède exactement deux éléments.

#### Solution

(a) On trouve:

$$\mathbb{C}_F f(A) = \mathbb{C}_F \{ f(\alpha), f(\beta), f(\gamma), f(\delta) \} = \mathbb{C}_F \{ r, s, u \} = \{ t, v, w \}$$

(b) C'est vrai. En effet:

$$f(x) \in f(A) \quad \Rightarrow \quad f(x) = r \text{ ou } f(x) = s \text{ ou } f(x) = u$$
 
$$\Rightarrow \quad x = \gamma \text{ ou } x = \alpha \text{ ou } x \in \{\beta, \delta\}$$
 
$$\Rightarrow \quad x \in A$$

(c) On a:

$$f^{-1}(B) = \{ x \in E \mid f(x) \in B \}.$$

Cet ensemble peut aussi être décrit par :

$$f^{-1}(B) = \bigcup_{y \in B} f^{-1}(\{y\}).$$

(d) On trouve:

$$\begin{split} f^{-1}(B) &= f^{-1}(\{s\}) \cup f^{-1}(\{t\}) \cup f^{-1}(\{u\}) \cup f^{-1}(\{v\}) \cup f^{-1}(\{w\}) \\ &= \{\alpha\} \cup \varnothing \cup \{\beta, \delta\} \cup \{\varepsilon\} \cup \{\lambda, \theta\} \\ &= \{\alpha, \beta, \delta, \varepsilon, \lambda, \theta\}. \end{split}$$

(e) On a:

$$f(f^{-1}(B)) = \{s, u, v, w\}.$$

Le sous-ensemble C doit donc avoir au moins 4 éléments. Pour en créer avec exactement 4 éléments, il faut sélectionner un antécédent pour chaque élément de  $f(f^{-1}(B))$ . Il y a 4 possibilités pour C:

$$\{\alpha, \beta, \varepsilon, \lambda\}, \{\alpha, \beta, \varepsilon, \theta\}, \{\alpha, \delta, \varepsilon, \lambda\}, \{\alpha, \delta, \varepsilon, \theta\}.$$

(f) Il y a de nombreuses possibilités, comme par exemple :

$$g: F \to E, \ x \to \begin{cases} \alpha & \text{si } x = r \\ \beta & \text{si } x \neq r \end{cases}$$

### Question 11: Cette question est notée sur 7 points.

On considère l'application suivante :

$$f: ]-\infty, 2[\cup]2, +\infty[\longrightarrow \mathbb{R}, \quad x \longrightarrow \frac{x^2-1}{x-2}.$$

- (a) Pour tout  $x \in ]-\infty, 2[\cup]2, +\infty[$ , déterminer l'ensemble  $f^{-1}(\{f(x)\})$ . Combien a-t-il d'éléments ?
- (b) L'application f est-elle injective? Justifier rigoureusement votre réponse.
- (c) Déterminer Im f.

### Solution

(a) Soient  $x, x' \in ]-\infty, 2[\cup ]2, +\infty[$ . On a alors :

$$f(x) = f(x') \quad \Leftrightarrow \quad \frac{x^2 - 1}{x - 2} = \frac{x'^2 - 1}{x' - 2}$$

$$\Leftrightarrow \quad (x^2 - 1)(x' - 2) = (x'^2 - 1)(x - 2)$$

$$\Leftrightarrow \quad x^2 x' - 2x^2 - x' + 2 = x'^2 x - 2x'^2 - x + 2$$

$$\Leftrightarrow \quad x^2 x' - x'^2 x - 2x^2 + 2x'^2 - x' + x = 0$$

$$\Leftrightarrow \quad xx'(x - x') - 2(x - x')(x + x') + x - x' = 0$$

$$\Leftrightarrow \quad (x - x')(xx' - 2x - 2x' + 1) = 0$$

$$\Leftrightarrow \quad x' = x \text{ ou } xx' - 2x - 2x' + 1 = 0$$

$$\Leftrightarrow \quad x' = x \text{ ou } xx' - 2x - 2x' + 1 = 0$$

$$\Leftrightarrow \quad x' = x \text{ ou } xx' - 2x - 2x - 1 = 0$$

$$\Leftrightarrow \quad x' = x \text{ ou } x'(x - 2) = 2x - 1 = 0$$

$$\Leftrightarrow \quad x' = x \text{ ou } x' = \frac{2x - 1}{x - 2}.$$

Etant donné  $x \in ]-\infty, 2[\,\cup\,]2, +\infty[,$  on observe maintenant que :

$$\frac{2x-1}{x-2} \neq 2 \text{ (car } 2x-1 \neq 2x-4)$$

si bien que ce qui précède montre que :

$$f^{-1}(\{f(x)\}) = \{x, \frac{2x-1}{x-2}\}$$

Pour connaître le nombre d'élément de cet ensemble, il reste à étudier l'équation suivante en  $x \neq 2$ :

$$x = \frac{2x-1}{x-2}$$
  $\Leftrightarrow$   $x^2 - 2x = 2x - 1$   $\Leftrightarrow$   $x^2 - 4x + 1 = 0$   $\Leftrightarrow$   $x = 2 \pm \sqrt{3}$ .

On obtient donc finalement:

$$f^{-1}(\{f(x)\}) = \begin{cases} \{x, \frac{2x-1}{x-2}\} & \text{si } x \neq 2, 2 \pm \sqrt{3} \\ \{x\} & \text{si } x = 2 \pm \sqrt{3} \end{cases}$$
 (deux éléments distincts)

(b) L'application f n'est pas injective. D'après le travail effectué au (a), on trouve par exemple :

$$f(1) = f(\frac{2-1}{1-2}) = f(-1) \ (=0).$$

(c) Soit  $y \in \mathbb{R}$ . On a alors:

$$y \in \operatorname{Im} f$$
  $\Leftrightarrow$   $\exists x \in \mathbb{R}, x \neq 2 \text{ et } f(x) = \frac{x^2 - 1}{x - 2} = y$   
 $\Leftrightarrow$   $\exists x \in \mathbb{R}, x \neq 2 \text{ et } x^2 - 1 = y(x - 2)$   
 $\Leftrightarrow$   $\exists x \in \mathbb{R}, x^2 - 1 = y(x - 2)$ 

la dernière équivalence provenant du fait que x=2 n'est pas solution de l'équation. Poursuivons :

$$y \in \operatorname{Im} f \quad \Leftrightarrow \quad \exists x \in \mathbb{R} \,, \ x^2 - xy + 2y - 1 = 0$$

$$\Leftrightarrow \quad \underbrace{(-y)^2 - 4(2y - 1)}_{\Delta} \geqslant 0$$

$$\Leftrightarrow \quad y^2 - 8y + 4 \geqslant 0.$$

Le trinôme en y obtenu a pour racines  $4 \pm 2\sqrt{3}$ , et il positif en dehors des racines. On a donc :

Im 
$$f = ]-\infty, 4-2\sqrt{3}[\cup]4+2\sqrt{3}, +\infty[$$
.



